Naive Bayes Spam Filtering Using Word-Position-Based Attributes

نویسنده

  • Johan Hovold
چکیده

This paper explores the use of the naive Bayes classifier as the basis for personalised spam filters. Several machine learning algorithms, including variants of naive Bayes, have previously been used for this purpose, but the author’s implementation using wordposition-based attribute vectors gave very good results when tested on several publicly available corpora. The effects of various forms of attribute selection—removal of frequent and infrequent words, respectively, and by using mutual information—are investigated. It is also shown how n-grams, with n > 1, may be used to boost classification performance. Finally, an efficient weighting scheme for cost-sensitive classification is introduced.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Naive Bayes spam filtering using word-position-based attributes and length-sensitive classification thresholds

This paper explores the use of the naive Bayes classifier as the basis for personalised spam filters. Several machine learning algorithms, including variants of naive Bayes, have previously been used for this purpose, but the author’s implementation using word-position-based attribute vectors gave very good results when tested on several publicly available corpora. The effects of various forms ...

متن کامل

Naive Bayes Spam Filtering Using Word Position Attributes

This paper explores the use of the naive Bayes classifier as the basis for personalized spam filters. Various machine learning algorithms, including variants of naive Bayes, have previously been used for this purpose, but the author’s implementation using word position based attribute vectors gives very good results when tested on several publicly available corpora. The effect of various forms ...

متن کامل

Evolutionary Symbiotic Feature Selection for Email Spam Detection

This work presents a symbiotic filtering approach enabling the exchange of relevant word features among different users in order to improve local anti-spam filters. The local spam filtering is based on a ContentBased Filtering strategy, where word frequencies are fed into a Naive Bayes learner. Several Evolutionary Algorithms are explored for feature selection, including the proposed symbiotic ...

متن کامل

A Comparison of Event Models for Naive Bayes Anti-Spam E-Mail Filtering

We describe experiments with a Naive Bayes text classifier in the context of anti-spam E-mail filtering, using two different statistical event models: a multi-variate Bernoulli model and a multinomial model. We introduce a family of feature ranking functions for feature selection in the multinomial event model that take account of the word frequency information. We present evaluation results on...

متن کامل

PRIS Kidult Anti-SPAM Solution at the TREC 2005 Spam Track: Improving the Performance of Naive Bayes for Spam Detection

Recently, the spam already constituted a serious problem for both e-mail users and Internet Service Providers (ISP). Solutions to the abuse of spam would be both technical and legal regulatory. This paper reports our solution for the TREC 2005 spam track, in which we consider the use of Naive Bayes spam filter for its desirable properties (simplicity, low time and memory requirements, etc.). Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005